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Abstract

In this guide to the Elekes-Sharir framework we discuss the history of this framework
and the basic technical details.

1 Introduction

Guth and Katz’s seminal work [9] provided an almost tight bound for Erdős’s planar distinct
distances problem [6]. One can regard the proof of this bound as consisting of four main
tools:

(i) A reduction from the distinct distances problem to a problem about line intersections
in R3. This part is referred to as the Elekes-Sharir reduction or as the Elekes-Sharir
framework.

(ii) The introduction of polynomial partitioning.

(iii) Applying 19th century analytic geometry tools that are related to ruled surfaces, such
as flecnode polynomials.

(iv) The polynomial technique presented in Guth and Katz’s previous paper [8]. (That is,
relying on the existence of a polynomial of a small degree that vanishes on a given
point set to reduce incidence problems between points and lines to the interactions
between the lines and the algebraic variety which is the zero set of the polynomial.)

The current document discusses the Elekes-Sharir framework from item (i). This frame-
work already has several applications beyond its original use by Guth and Katz [9], and more
applications for it are constantly being discovered. Several recent bounds for other vari-
ants of the distinct distances problem rely on a partial bipartite variant of this framework
[17, 18, 19, 21], and a recent work also applies it in finite fields [1]. The framework is also
used to obtain bounds for classes of congruent and similar triangles [13] and distinct area
triangles [10]. Currently, the main challenge might be to extend the reduction to distinct
distances problems in higher dimensions. While initial work in progress indicates that this
can be done, the resulting problems still seem to be hard to tackle. Still, one might hope
that applying the reduction in some clever manner would lead to a more elegant problem
that can be solved more easily.

Before getting to the technical details, we begin with some of the history of the Elekes-
Sharir framework. Elekes and Sharir used to think about the distinct distances problem,
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and around the turn of the millennium Elekes communicated to Sharir the basics of a
reduction from this problem to a problem of bounding the number of intersections in a set
of helices in R3 (this problem can also be formulated as a point-helix incidence problem
in R3). Although this reduction seemed elegant and somewhat surprising, the resulting
problem appeared hopeless with the existing tools for solving incidence-related problems.
Thus, the reduction was abandoned for nearly a decade.

Győrgy Elekes passed away in September 2008. A few years earlier, he has made some
progress on a very simplified variant of the 3-dimensional incidence problems1 that his
reduction leads to, and communicated this result too to Sharir, concluding the email by
writing

”By the way, in case of something unexpected happens to me (car accident,
plane crash, a brick on the top of my skull) I definitely ask you to publish any-
thing we have, at your will”.

This progress too was left untouched until Elekes’s death. His son, Márton Elekes, found
this note while going over his father’s files, and asked Sharir to try and publish it. In a
curious turn of events, while Sharir was extending and polishing Elekes’s note and planning
to publish it, Guth and Katz published their work on the joints problem [8] which provided
new tools for dealing with incidences in R3 (and in a way initiated the recent use of algebraic
techniques for problems in combinatorial geometry2). Sharir simplified the reduction so that
it resulted in a problem concerning incidences between points and parabolas in R3, applied
the tools from [8] to obtain some initial (weak) bounds for the point-parabola problem, and
published the result [5]. Publishing the reduction, thereby exposing it for the first time
to the general community, proved to be a good idea, because hardly any time had passed
before Guth and Katz managed to apply it to get their almost tight bound for the distinct
distances problem [9]. Guth and Katz further simplified the reduction so that it has now
resulted in a problem concerning intersections between lines in R3.

This turn of events makes it unclear whether the appropriate name for the reduction is
“the Elekes framework”, “the Elekes-Sharir framework”, or “the Elekes-Sharir-Guth-Katz
framework”. For now, it seems that the second option has caught on. For more historical
details, see [15].

2 The basic reduction

Consider a set P of n points in the plane, and let x denote the number of distinct distances
that are determined by pairs of points from P. The reduction revolves around the set

Q =
{
(a, p, b, q) ∈ P4 | |ap| = |bq| > 0

}
.

The quadruples in Q are ordered in the sense that (a, p, b, q), (b, p, a, q), (p, a, q, b), and the
other possible permutations are all considered as distinct elements of Q. In a quadruple
(a, p, b, q) ∈ Q, the segments ap and bq are allowed to share vertices, though we do not
allow a quadruple where both a = b and p = q (the case where a = q and b = p is allowed).
Basically, the reduction is just double counting |Q|, and we begin by deriving a lower bound.

1In this variant, one asks for the number of incidences between points and equally inclined lines in R3

(lines that form a fixed angle, say π/4, with the z-axis).
2In fact, the initiation is due to Dvir [2], who has used similar ideas for related problems on finite fields.

Nevertheless, the application of these tools in the real domain has originated in Guth and Katz’s work.
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We denote the set of (nonzero) distinct distances that are determined by P×P as δ1, . . . , δx.
Also, for 1 ≤ i ≤ x, we set

Ei =
{
(p, q) ∈ P2 | |pq| = δi

}
.

As before, we consider (p, q) and (q, p) as two distinct pairs in Ei. Notice that
∑x

i=1 |Ei| =
n2 − n since every ordered pair of distinct points of P × P is contained in a unique set Ei.
By applying the Cauchy-Schwarz inequality, we have

|Q| =
x∑

i=1

2

(
|Ei|
2

)
≥

x∑
i=1

(|Ei| − 1)2 ≥ 1

x

(
x∑

i=1

|Ei| − 1

)2

=
(n2 − n− x)2

x
. (1)

It remains to upper bound |Q|. Specifically, if we manage to derive the bound |Q| =
O(n3 logn), combining it with (1) would immediately imply x = Ω(n/ log n).
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Figure 1: The second transformation is a rigid motion but not a proper one, since it does not preserve
orientation.

A transformation of the plane is said to be a rigid motion if it preserves distances between
points. Any combination of rotations, translations, and reflections is a rigid motion. A
proper rigid motion is a rigid motion that also preserves orientation; that is, an ordered
triple of points abc forms a left turn after applying the transformation if and only if it
originally formed a left turn. See Figure 1 for an example.

The proper rigid motions are exactly the transformations that are obtained by combining
rotations and translations. In fact, every (planar) proper rigid motion is either a single
rotation or a single translation. (That is, any combination of rotations and translations
results in a single translation or in a sinle rotation; more details can be found in [11,
Section III.7].)

a b

o

Figure 2: The origin of the rotation must be on the perpendicular bisector.

For a pair of points a, b ∈ P, consider the rotations that take a to b. The origin of such
a rotation must be equidistant from a and b. In other words, the centers of these rotations
must all be on the perpendicular bisector of the segment ab. Conversely, every point on the
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perpendicular bisector of ab is the origin of a rotation that takes a to b. See Figure 2 for
an illustration.

Consider a quadruple (a, p, b, q) ∈ Q and recall that by definition |ap| = |bq|. We can
always apply a rotation that takes a to b and then rotate around the new position of a until
p is taken to q. This translation followed by a rotation is a proper rigid motion taking ap
to bq. To see that there is a unique proper rigid motion that takes ap to bq, we denote by
ℓ1 and ℓ2 the perpendicular bisectors of the segments ab and pq, respectively. If ℓ1 and ℓ2
are parallel, then there is a unique translation taking ap to bq (and no rotations; e.g., see
Figure 3(a)). Similarly, if ℓ1 and ℓ2 intersect, then there is a unique rotation taking ap to
bq, and no translations. Specifically, the origin of this rotation is the point ℓ1 ∩ ℓ2, and the
angles of rotation from a to b and from p to q are equal because |ap| = |bq| (see Figure
3(b)).
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Figure 3: When |ap| = |bq|: (a) If the perpendicular bisectors are parallel then there is a translation
taking ap to bq. (b) If the perpendicular bisectors intersect, there is a rotation taking ap to bq, and its
origin is the intersection point of the two bisectors.

By the above, we have the following equivalent definition for Q: a quadruple (a, p, b, q)
is in Q if and only if there exists a proper rigid motion τ that takes ap to bq (the implication
which is not considered above is trivial: If there exists a proper rigid motion that takes ap
to bq, obviously |ap| = |bq|). We say that the quadruple (a, p, b, q) corresponds to τ . That
is, our goal is to show that the number of quadruples from P4 that correspond to a proper
rigid motion is O(n3 log n). As already noted, such a bound, combined with (1), would lead
to the Guth-Katz bound on the number of distinct distances.

We first bound the number of quadruples in Q that correspond to a translation. Given
the first three points of a quadruple (a, p, b, ?), there is at most one point in P that can
complete it to a quadruple that corresponds to a translation. Thus, O(n3) quadruples in Q
correspond to a translation.

Bounding the number of quadruples in Q that correspond to a rotation is more difficult.
A rotation can be parameterized using three parameters — two parameters for the origin
and another one for the angle of rotation. Given a rotation with origin (ox, oy) and an angle
of α, Guth and Katz [9] parameterize it as (ox, oy, cot(α/2)) ∈ R3. The advantage of this
parametrization is that, given a pair of points a, b ∈ R2, the set of parametrizations of the
rotations that take a to b is exactly the following line in R3:

ℓab =

(
ax + bx

2
,
ay + by

2
, 0

)
+ t

(
by − ay

2
,
ax − bx

2
, 1

)
, for t ∈ R. (2)

The proof of this property is a rather standard calculation which is not relevant to the
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rest of our discussion, so we postpone it to Appendix A. Notice that the projection of ℓab
on the xy-plane is the perpendicular bisector of ab, as expected. That is, ℓab is obtained by
“lifting” the perpendicular bisector of ab to a line in R3 whose slope in the z-direction is
2/|ab|, as is easily checked.

Figure 4: A quadruple of points in the plane, the two perpendicular bisectors, and their “lifting” to R3.

Consider a quadruple (a, p, b, q) ∈ P4 and let ℓab and ℓpq be the pair of lines in R3

corresponding to (a, b) and (p, q), as defined in (2). If the intersection point p = ℓab ∩ ℓpq
exists, then it is the parametrization of a rotation taking both a to b and p to q. That is,
the quadruple (a, p, b, q) corresponds to a rotation (and is thus in Q) if and only if ℓab and
ℓpq intersect. Figure 4 depicts such a quadruple of points, the two perpendicular bisectors,
and their “liftings” to R3.

Pairs of points from P yield Θ(n2) lines in the parametric space R3, and there is a
bijection between quadruples that correspond to rotations and pairs of intersecting lines.
Thus, an upper bound of O(n3 log n) on the number of pairs of intersecting lines would
imply |Q| = O(n3 log n), as required.

By placing Θ(n2) lines on a common plane or regulus we can easily obtain Θ(n4) pairs of
intersecting lines. However, the lines that are obtained by the above reduction are restricted
and cannot all be on a common plane or regulus. Specifically, Guth and Katz show that no
plane or regulus can contain more than O(n) of these lines, and that no point is incident to
more than n lines. With these additional restrictions, Guth and Katz prove that no more
than O(n3 log n) pairs of intersecting lines are possible.3

Acknowledgements. The author would like to thank Micha Sharir for the many helpful
comments.
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A Lines in the parametric space R3

In this appendix we consider the parametrization of planar rotations that is presented in
Section 2. That is, a rotation with origin point o ∈ R2 and angle α is parameterized by
the point

(
ox, oy, cot

α
2

)
∈ R3. Given a pair of points a, b ∈ R2, we explain why the set of

parametrizations of the rotations that take a to b is a line in R3. Recall that the origin
of such a rotation is required to be on the perpendicular bisector of the segment ab. This
situation is depicted in Figure 5, where c = ((ax+ bx)/2, (ay + by)/2) is the midpoint of the
segment ab and δ = |ab| =

√
(ax − bx)2 + (ay − by)2.

a

c

b

oα/2

α/2

δ
2

δ
2

Figure 5: A rotation with origin o and angle α that takes a to b.

Notice that the slope of the perpendicular bisector of ab is s = (ax − bx)/(by − ay) and that
it is incident to c. Since o is on the perpendicular bisector of ab, we have

oy −
ay + by

2
= s(ox −

ax + bx
2

). (3)

We assume that that ox ≥ cx and oy ≥ cy, and set or dx = ox − cx and dy = oy − cy (the
other cases can be similarly handled). This implies dy = sdx. We thus have

|co| =
√

d2x + d2y = dx
√

1 + s2 = dx

√
(ax − bx)2 + (by − ay)2

(by − ay)2
=

δdx
by − ay

. (4)

From Figure 5, we notice that |co| = δ
2 cot

α
2 . Combining this with (4), we obtain

dx =
by − ay

2
· cot α

2
. (5)

Combining (3) and (5) implies that
(
ox, oy, cot

α
2

)
is on the following line in R3:

ℓab =

(
ax + bx

2
,
ay + by

2
, 0

)
+ t

(
by − ay

2
,
ax − bx

2
, 1

)
, for t ∈ R.

Conversely, since we can choose o to be any point on the perpendicular bisector, any point
on ℓab is the parametrization of a rotation that takes a to b. Thus, ℓab is exactly the set of
parametrizations of the rotations that take a to b.
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